A tale of two functions: enzymatic activity and translational repression by carboxyltransferase
نویسندگان
چکیده
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the alpha- and beta-subunits, respectively, are not in an operon, yet yield an alpha(2)beta(2) carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the beta-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a 'dimmer switch' to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.
منابع مشابه
Translational Antidote Research: A Bedside to Bench Tale
Although antidote development should proceed in an orderly fashion from observation, to experimental and safety studies, to clinical trials, this sequence is not always precisely followed. The development of fomepizole as an antidote for toxic alcohol and glycol poisoning is an example of how this may not be the case. Interest in the development of fomepizole was spurred in the 1960s. Shortly t...
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملPTEN: Multiple Functions in Human Malignant Tumors
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcripti...
متن کاملtAle-mediated modulation of transcriptional enhancers in vivo
nAture methods | ADVANCE ONLINE PUBLICATION | We tested whether transcription activator–like effectors (tAles) could mediate repression and activation of endogenous enhancers in the Drosophila genome. tAle repressors (tAlers) targeting each of the five even-skipped (eve) stripe enhancers generated repression specifically of the focal stripes. tAle activators (tAleAs) targeting the eve promoter ...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کامل